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Abstract

The paper discusses methods of modeling of singular stress fields in problems with angular corners. A novel method

of analytical constraints has been proposed. In this method the relations between the displacements of the finite element

nodes are assumed to conform to the analytical solution. The method of analytical constraints has been used for

calculations of the stress intensity factors and of the coefficients of the two consecutive terms of the asymptotic solution

in the case of elements with cracks and V-notches under uniaxial and biaxial loading. Singular finite elements have been

applied and various mesh discretisations have been used.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The ability to predict fracture of structural components is of fundamental importance for reliability of
any engineering design. Fracture initiation and its subsequent propagation occur in regions of high stress
and strain gradients. It is therefore necessary to accurately determine the stress–strain concentrations and
for this purpose various analytical, numerical and experimental methods have been developed.

Analytical methods of linear elastic fracture mechanics can be applied to problems of relatively simple
geometry. Here, analysis of singular stress fields at sharp angular corners is of particular importance (see
for example Williams, 1952; Parton and Perlin, 1984; Seweryn and Molski, 1996). Let us consider an infinite
linear elastic plate with a V-shaped notch with a wedge angle of 2b and a system of polar coordinates ðr; #Þ,
with an origin at the tip of the notch (Fig. 1). The dominant singularity governing the behavior of the
stresses rij and displacements ui in the notch-tip region has the form (Seweryn and Molski, 1996):

rij ¼
Kk

I

ð2prÞ1�kI
cijð#Þ þ

Kk
II

ð2prÞ1�kII
dijð#Þ;

ui ¼
r
2l
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I

ð2prÞ1�kI
aið#Þ

"
þ Kk

II

ð2prÞ1�kII
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#
;

ð1Þ
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where Kk
I and Kk

II are the generalized opening mode (mode I) and sliding mode (mode II) stress intensity
factors (Seweryn, 1990b; Seweryn and Zwolinski, 1993), kI and kII are the exponents of the displacement
field for the modes I and II, cijð#Þ, dijð#Þ, aið#Þ, bið#Þ are trigonometric functions, l denotes the shear
modulus.

Numerical methods provide for modeling of the stress fields conforming to the analytical solution and
enable evaluation of fracture mechanics parameters such as the stress intensity factors. In general the finite
element method and the boundary element method are of the most practical importance (Liebowitz and
Moyer, 1989; Aliabadi, 1997).

The stress singularities are modeled to conform to the analytical solution. Special singular finite elements
and boundary elements have been developed to account for the appropriate singularity (see for example
works by Akin, 1982; Portela et al., 1991; or Aliabadi and Rooke, 1991) and to facilitate evaluation of the
generalized stress intensity factors (Babuska and Miller, 1994; Szabo and Yosibash, 1996).

Among the special finite elements the following three groups are the most commonly used:

• degenerated asymptotic finite elements (Tracey, 1971; Tracey and Cook, 1977; Pu et al., 1978);
• hybrid (or enriched) finite elements (Lin and Tong, 1980; Heyliger and Kriz, 1989);
• analytical finite elements (Givoli and Rivkin, 1993).

The main idea behind the asymptotic finite elements is to find a transformation that converts a normal
finite element, such as for example a quadrilateral element with constant stress distribution or a quadri-
lateral element with linear stress distribution into a triangular element with the required hyperbolic sin-
gularity (see for example: Blackburn, 1972; Akin, 1976; Yamada et al., 1979).

Singular stress fields can be also modeled by using another class of finite elements known as hybrid finite
elements. The formulation of the above elements combines the classical finite element approximation with
the asymptotic solution in the vicinity of an angular corner (Tong et al., 1973; Tong and Pian, 1973;
Benzley, 1974). Adding analytic expressions (1) to the conventional approximating polynomial yields the
following displacement field within a hybrid element:

ui ¼
Xm

j¼1

Nij qj

�
� Kk

I wiðkI; rj; #jÞ � Kk
II/iðkII; rj; #jÞ

�
þ Kk

I wiðkI; r; #Þ þ Kk
II/iðkII; r; #Þ; ð2Þ

where Nij are standard interpolating functions, qj are nodal displacements, rj and #j are the coordinates of
the element nodes in the polar coordinate system ðr; #Þ and functions wi and /i can be obtained from (1).

Fig. 1. Notch geometry and polar coordinates ðr; #Þ.
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The above allows for the direct calculation of the stress intensity factors. The stress intensity factors are just
additional unknowns in the problem.

The idea of introducing analytical elements is based on application in the core region, around the sin-
gular point of the corner, theoretical solution for stresses and displacements with unknown constant fac-
tors, e.g. stress intensity factors (Givoli and Rivkin, 1993). The remaining area of the structure can be
modeled using classic finite elements.

The powerful tool for computational fracture mechanics is the penalty-equilibrium hybrid stress element
method proposed by Wu and Cheug (1995) and Xiao et al. (1999). It is an improvement on the original
stress element method in that the element formulation is based on a penalty Hellinger–Reissner principle
and the traction boundary conditions on a crack or notch edge are enforced exactly.

The methods of computing of the generalized stress intensity factors can be classified as follows:

• direct methods––here the values of the generalized stress intensity factors are evaluated directly as the
basic unknowns in the problem (in addition to for example the nodal displacements),

• asymptotic methods––the idea is to compare the stresses or displacements obtained numerically with the
analytic solution,

• energy based methods––the approach is based either on the reciprocal theorem or on the evaluation of
the change of the potential energy associated with crack propagation.

The asymptotic methods of calculating the generalized stress intensity factors are based on the analytic
expressions for the stress and displacement fields in the vicinity of the notch tip. Eq. (1) can be used to
evaluate the stress intensity factors Kk

I and Kk
II at a given point with coordinates ðr; #Þ provided the stresses

and displacements at that point are known from some numerical solution. As the stress intensity factors are
computed at some distance r from the notch vertex extrapolation techniques have to be used in order to
improve accuracy (Tracey, 1977). In accordance with the analytic solution extrapolation with respect to the
coordinate r1�k is required (Seweryn, 1990a). In another asymptotic method the stress intensity factors Kk

I

and Kk
II are computed by evaluating the change of shape of the notch (or crack) edges in the tip vicinity

(Chow and Lan, 1976; Seweryn, 1990a; He et al., 1997). The values of the displacements along the notch
edges can be easily related to the values of the stress intensity factors.

In the energy based approach the mode I stress intensity factor for a crack KI can be evaluated from the
following relation between the total strain energy V and the strain energy release rate GI:

GI ¼
K2

I

E0 ¼ � oV
ol

¼ 1

2

oqT

ol
Qþ 1

2
qT

oQ

ol
¼ � 1

2
qT

oK

ol
qþ qT oQ

ol
; ð3Þ

where E0 ¼ E––for plane stress and E0 ¼ E=ð1� m2Þ––for plane strain, Q and q are the nodal force and the
global displacement vectors, K is the stiffness matrix.

In numerical implementation of the above method (compliance method), two finite element analyses are
carried out for two crack lengths l and l þ Dl with the same finite element mesh (Vaynshtok, 1977). In
another energy based approach the stress intensity factor KI is evaluated by displacing the crack tip node
(Parks, 1974; Hellen, 1975; Nikishkov and Vaynshtok, 1980; Yang et al., 2001).

The stress intensity factor KI can also be evaluated by using the crack closure integral. The above integral
corresponds to the energy release rate GI expressed in terms of the work of the internal forces at the tip of
the crack on the opening displacement, required to extend the crack by a small distance Dl (Rybicki and
Kanninen, 1977).

A common way of computing the stress intensity factor KI is to use the path-independent integral J
(Rice, 1968; Cherepanov, 1967). In mixed-mode problems the stress and displacement fields must be de-
composed into the symmetric and anti-symmetric parts. The second approach to evaluation of the stress

A. Seweryn / International Journal of Solids and Structures 39 (2002) 4787–4804 4789



intensity factors KI and KII is based on invariant integrals Jx and Jy , that are equivalent to the components
of the energy flux (Cherepanov, 1979):

Jx ¼
Z

C
wnx

�
� rij

oui

ox
nj

�
ds; Jy ¼

Z
C

wny

�
� rij

oui

oy
nj

�
ds; ð4Þ

where C is the contour of integration, nðn1; n2Þ is the unit vector normal to C, ds is an infinitesimal in-
crement of arc length along C and w is the strain energy density.

The generalized stress intensity factors can also be determined using methods based on Betti’s reciprocal
theorem (Stern and Soni, 1976; Sinclair et al., 1984; Carpenter, 1984; Labossiere and Dunn, 1998). The
factor Kk

I can be determined by evaluating the integral along the contour C (around the notch tip) and using
stresses rij and displacements ui obtained from the finite element solution, namely:

Kk
I ¼ HI ¼

Z
C
ðriju�

i � r�
ijuiÞnj ds: ð5Þ

The complementary stresses r�
ij and displacements u�

i are determined from integral (5), based on the analytic
expressions (1) for the stress and displacement fields in the vicinity of the notch tip. Similar relations can be
derived for the case of a V-notch subjected to mode II loading (anti-symmetric problem).

2. Method of analytical constraints

Analysis of fracture of structural elements with cracks or sharp corners subjected to complex loading
conditions requires accurate evaluation of the generalized stress intensity factors Kk

I and Kk
II. In the paper by

Ramulu and Kobayashi (1994) and Seweryn (1998) it has been demonstrated that under certain loading
conditions it is necessary to consider the higher order terms of the asymptotic expansion. Among the
methods mentioned in the previous section just the method of hybrid elements (or analytical elements)
enables inclusion of the higher order terms. In this section an alternative and simpler method of analytical
constraints is presented.

The method of analytical constraints combined with the finite element method can be effectively applied
to problems with angular corners for direct and accurate calculation of the stress intensity factors as well as
the coefficients of the higher order terms in the asymptotic expansion of the stress field. Contrary to for
example the asymptotic methods in the method of analytical constraints one assumes that the displace-
ments of the finite element nodes conform to the analytic solution rather than just using the nodal dis-
placements obtained from a numerical solution for calculation of other parameters.

The idea of the method is described below using an example problem of fracture mechanics. Let us
consider a body with a crack as illustrated in Fig. 2. The region is covered with a finite element mesh with m
nodes. The displacements of the finite element nodes in the region around the crack tip XA are constrained
by the analytic relations. The remaining part of the body is referred to as the region XO. The region XO

contains n � 1 nodes (numbered from 1 through n � 1) with unaltered degrees of freedom (nodal dis-
placements). The region XA contains m � n þ 1 nodes (numbered from n through m), for which the initial
number of degrees of freedom has been reduced from 2ðm � n þ 1Þ to k (as there are 2ðm � n þ 1Þ analytic
relations with k parameters).

The global displacement vector q is divided into two parts (subvectors):

• vector of displacement components of nodes with analytical constraints (region XA)––uA ¼ fun; vn;
unþ1; vnþ1; . . . ; um; vmg,

• vector of displacement components of all other nodes (region XO)––uO ¼ fu1; v1; . . . ; un�1; vn�1g, that is
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qT ¼ fuTO; uTAg: ð6Þ

The strain energy of the system can be written as

U ¼ 1

2
qTKq ¼ 1

2
fuTO; uTAg

KOO KAO

KOA KAA

	 

uO
uA

� �
; ð7Þ

where K is the global stiffness matrix.
Let us consider the singular stress and displacement distributions in the crack tip region given by

rij ¼
1ffiffiffiffiffiffiffi
2pr

p KIf I
ijð#Þ

h
þ KIIf II

ij ð#Þ
i
;

ui ¼
r

2l
ffiffiffiffiffiffiffi
2pr

p KIgI
i ð#Þ

�
þ KIIgII

i ð#Þ
�
þ uCi;

ð8Þ

where ðr; #Þ are polar coordinates with an origin at the crack tip, KI and KII denotes the mode I and mode II
stress intensity factors, uCi are displacement components of the crack (or notch) tip.

Let us introduce a modified vector of nodal parameters:

q�T ¼ fuTO; uTKg; ð9Þ

where uK is the vector of analytical parameters containing less components than the vector uA. For the
considered crack problem as expressed by (8) the above vector takes the form:

uTK ¼ fKI;KII; uC; vCg: ð10Þ

The relationship between q and q� can be written as follows:

q ¼ Gq�; ð11Þ

or

uO
uA

� �
¼ I 0

0 W

	 

uO
uK

� �
;

where I is unit matrix and W is the matrix of analytical constraints.

Fig. 2. Body containing a crack and regions XA and XO.
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The matrix of analytical constraints W relates the degrees of freedom (nodal displacements in region XA)
to analytical parameters (i.e. the stress intensity factors KI and KII and the displacement components at the
crack tip uC and vC), namely:

uA ¼ WuK: ð12Þ

Assuming that analytical constraints have been imposed on nodes with indexes from n to m and using
relations (8) the matrix of analytical constraints W becomes:

W ¼ 1

2l
ffiffiffiffiffiffi
2p

p

ffiffiffiffi
rn

p
gI
1ð#nÞ

ffiffiffiffi
rn

p
gII
1 ð#nÞ 2l

ffiffiffiffiffiffi
2p

p
0ffiffiffiffi

rn
p

gI
2ð#nÞ

ffiffiffiffi
rn

p
gII
2 ð#nÞ 0 2l

ffiffiffiffiffiffi
2p

p
ffiffiffiffiffiffiffiffi
rnþ1

p
gI
1ð#nþ1Þ

ffiffiffiffiffiffiffiffi
rnþ1

p
gII
1 ð#nþ1Þ 2l

ffiffiffiffiffiffi
2p

p
0

. . . . . . . . . . . .ffiffiffiffiffi
rm

p
gI
2ð#mÞ

ffiffiffiffiffi
rm

p
gII
2 ð#mÞ 0 2l

ffiffiffiffiffiffi
2p

p

2
666664

3
777775; ð13Þ

where rn, #n stand for coordinates of the node with an index n in the polar coordinate system with an origin
at the crack tip.

Substituting (11) into (7) the strain energy of the system U can be written as follows:

U ¼ 1
2
q�TðGTKGÞq� ¼ 1

2
q�TK�q�; ð14Þ

where K� denotes the modified stiffness matrix:

K� ¼ KOO KAOW
WTKOA WTKAAW

	 

: ð15Þ

Simple modification of the global stiffness matrix should be carried out while composing the local stiffness
matrixes. The boundary conditions of the problem can be taken into consideration following a similar
procedure. The load vector Q should be modified as follows:

Q� ¼ GTQ: ð16Þ

The above relation results from the following expression for the work of external forces W:

W ¼ qTQ ¼ q�TðGTQÞ: ð17Þ

Let us consider the stress and displacement distributions at the crack tip given by the following expansions
(Williams, 1957):

rij ¼
Xm1

k¼1

KIkrðk=2Þ�1f Ik
ij ð#Þ þ

Xm2

k¼1

KIIkrðk=2Þ�1f IIk
ij ð#Þ;

ui ¼
Xm1

k¼1

KIkrk=2gIk
i ð#Þ þ

Xm2

k¼1

KIIkrk=2gIIk
i ð#Þ þ uCi;

ð18Þ

where m1 and m2 are the numbers of terms in the solution for mode I and II, respectively. It should be
noted, that KI1 ¼ KI and KII1 ¼ KII and the term KII2 rgII2

i ð#Þ corresponds to rigid rotation of the crack tip
region (and the local coordinate system).

The vector of analytical parameters becomes:

uTK ¼ fKI;KI2;KI3; . . . ;KIm1
;KII;KII2;KII3; . . . ;KIIm2

; uC; vCg; ð19Þ

and the matrix of analytical constraints imposed on nodes from n to m can be written as follows:

4792 A. Seweryn / International Journal of Solids and Structures 39 (2002) 4787–4804



W ¼

ffiffiffiffi
rn

p
gI1
1 ð#nÞ rngI2

1 ð#nÞ r3=2n gI3
1 ð#nÞ . . .

ffiffiffiffi
rn

p
gII1
1 ð#nÞ rngII2

1 ð#nÞ r3=2n gII3
1 ð#nÞ . . . 1 0ffiffiffiffi

rn
p

gI1
2 ð#nÞ rngI2

2 ð#nÞ r3=2n gI3
2 ð#nÞ . . .

ffiffiffiffi
rn

p
gII1
2 ð#nÞ rngII2

2 ð#nÞ r3=2n gII3
2 ð#nÞ . . . 0 1ffiffiffiffiffiffiffiffi

rnþ1
p

gI1
1 ð#nþ1Þ rnþ1gI2

1 ð#nþ1Þ r3=2nþ1g
I3
1 ð#nþ1Þ . . .

ffiffiffiffiffiffiffiffi
rnþ1

p
gII1
1 ð#nþ1Þ rnþ1gII2

1 ð#nþ1Þ r3=2nþ1g
II3
1 ð#nþ1Þ . . . 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ffiffiffiffiffi
rm

p
gI1
2 ð#mÞ rmgI2

2 ð#mÞ r3=2m gI3
1 ð#mÞ . . .

ffiffiffiffiffi
rm

p
gII1
2 ð#mÞ rmgII2

2 ð#mÞ r3=2m gII3
1 ð#mÞ . . . 0 1

2
66664

3
77775:

ð20Þ
For angular corners the matrix of analytical constraints W can be derived using the asymptotic series so-
lutions for the stress and displacement fields:

rij ¼
Xm1

k¼1

Kk
Ikr

kIk�1f I
ijð#; kIkÞ þ

Xm2

k¼1

Kk
IIkr

kIIk�1f II
ij ð#; kIIkÞ;

ui ¼
Xm1

k¼1

Kk
Ikr

kIk gI
i ð#; kIkÞ þ

Xm2

k¼1

Kk
IIkr

kIIk gII
i ð#; kIIkÞ þ uCi;

ð21Þ

where kIk and kIk are consecutive solutions of the characteristic equation for the opening and shearing
modes, Kk

I1 ¼ Kk
I , Kk

IIk ¼ Kk
II are the generalized stress intensity factors, defined by the relations:

Kk
I þ iKk

II ¼ lim
#¼0 r!0

½ð2prÞ1�kIr##ðr; #Þ þ ið2prÞ1�kIIsr#ðr; #Þ
: ð22Þ

The vector of analytical parameters takes the form

uTK ¼ fKk
I ;K

k
I2;K

k
I3; . . . ;K

k
Im1

;Kk
II;K

k
II2;K

k
II3; . . . ;K

k
Im2

; uC; vCg; ð23Þ

and the matrix of analytical constraints becomes:

W ¼

rkI1
n gI

1ð#n; kI1Þ . . . rkIm1
n gI

1ð#n; kIm1Þ rkII1
n gII

1 ð#n; kII1Þ . . . rkIIm2
n gII

1 ð#n; kIIm2Þ 1 0

rkI1
n gI

2ð#n; kI1Þ . . . rkIm1
n gI

2ð#n; kIm1Þ rkII1
n gII

2 ð#n; kII1Þ . . . rkIIm2
n gII

2 ð#n; kIIm2Þ 0 1

rkI1
nþ1g

I
1ð#nþ1; kI1Þ . . . rkIm1

nþ1g
I
1ð#nþ1; kIm1Þ rkII1

nþ1g
II
1 ð#nþ1; kII1Þ . . . rkIIm2

nþ1 gII
1 ð#nþ1; kIIm2Þ 1 0

. . . . . . . . . . . . . . . . . . . . . . . .

rkI1
m gI

1ð#m; kI1Þ . . . rkIm1
m gI

1ð#m; kIm1Þ rkII1
m gII

1 ð#m; kII1Þ . . . rkIIm2
m gII

1 ð#m; kIIm2Þ 1 0

rkI1
m gI

2ð#m; kI1Þ . . . rkIm1
m gI

2ð#m; kIm1Þ rkII1
m gII

2 ð#m; kII1Þ . . . rkIIm2
m gII

1 ð#m; kIIm2Þ 0 1

2
666666664

3
777777775
:

ð24Þ
If the exponent of the kth term of the asymptotic expansion is complex ðkk ¼ Rekk þ iImkk; Imkk 6¼ 0Þ,
then also the conjugate value kk ¼ Rekk � iImkk, satisfies the problem conditions. The stress intensity
factor Kk

k is also complex ðKk
k ¼ ReKk

k þ iImKk
k Þ and its conjugate ðKk

k ¼ ReKk
k � iImKk

k Þ corresponds to
the conjugate of the exponent kk. Thus, a complex term in the asymptotic expansion implies two analytical
parameters ReKk

k and ImKk
k . The stress and displacement distributions are given by

rij ¼
Xm1

k¼1

ReKk
IkRe rkIk�1f I

ijð#; kIkÞ
h in

� ImKk
IkIm rkIk�1f I

ijð#; kIkÞ
h io

þ
Xm2

k¼1

ReKk
IIkRe rkIIk�1f II

ij ð#; kIIkÞ
h in

� ImKk
IIkIm rkIIk�1f II

ij ð#; kIIkÞ
h io

;

ui ¼
Xm1

k¼1

ReKk
IkRe rkIk gI

i ð#; kIkÞ
� ��

� ImKk
IkIm rkIk gI

i ð#; kIkÞ
� ��

þ
Xm2

k¼1

ReKk
IIkRe rkIIk gII

i ð#; kIIkÞ
� ��

� ImKk
IIkIm rkIIk�1gII

i ð#; kIIkÞ
� ��

:

ð25Þ
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The vector of analytical parameters takes the form:

uTK ¼ fReKk
I1; ImKk

I1;ReKk
I2; . . . ;ReKk

Im1
; ImKk

Im1
;ReKk

II1; ImKk
II1;ReKk

II2; . . . ;ReKk
Im2

; ImKk
Im2

; uC; vCg:
ð26Þ

Of course, if ImkIk ¼ 0 or ImkIIk ¼ 0, then one should skip the corresponding analytical parameter ImKk
Ik

or ImKk
IIk in the above vector.The matrix of analytical constraints becomes:

W ¼

Re rkI1
n gI

1ð#n; kI1Þ
� �

Im rkI1
n gI

1ð#n; kI1Þ
� �

Re rkI2
n gI

1ð#n; kI2Þ
� �

. . . Im rkIIm2
n gII

1 ð#n; kIIm2Þ
� �

1 0

Re rkI1
n gI

2ð#n; kI1Þ
� �

Im rkI1
n gI

2ð#n; kI1Þ
� �

Re rkI2
n gI

2ð#n; kI2Þ
� �

. . . Im rkIIm2
n gII

2 ð#n; kIIm2Þ
� �

0 1

Re rkI1
nþ1g

I
1ð#nþ1; kI1Þ

� �
Im rkI1

nþ1g
I
1ð#nþ1; kI1Þ

� �
Re rkI2

nþ1g
I
1ð#nþ1; kI2Þ

� �
. . . Im rkIIm2

nþ1 gII
1 ð#nþ1; kIIm2Þ

� �
1 0

. . . . . . . . . . . . . . . . . . . . .

Re rkI1
m gI

1ð#m; kI1Þ
� �

Im rkI1
m gI

1ð#m; kI1Þ
� �

Re rkI2
m gI

1ð#m; kI2Þ
� �

. . . Im rkIIm2
m gII

1 ð#m; kIIm2Þ
� �

1 0

Re rkI1
m gI

2ð#m; kI1Þ
� �

Im rkI1
m gI

2ð#m; kI1Þ
� �

Re rkI2
m gI

2ð#m; kI2Þ
� �

. . . Im rkIIm2
m gII

2 ð#m; kIIm2Þ
� �

0 1

2
666666664

3
777777775
:

ð27Þ
It should be pointed out that one can hardly find any physical interpretation for the complex terms with
0 < Rek < 1. The resulting singular stress field is oscillating with the frequency of the sign changes in-
creasing infinitely towards the vertex of an angular corner. Such a solution is also obtained for a crack
along the interface of two materials as well as for an angular corner with one edge free and the other
clamped.

One should note that in the method of analytical constraints the displacement field is continuous across
the element boundaries. On the other hand, in the method of hybrid elements displacement discontinuities
occur along the boundaries between the hybrid and the standard finite elements. To overcome the above
problem one has to introduce special interface elements (see for example Benzley, 1974).

It is important to note that analytical elements method and constraint method are conceptually similar.
The difference lays in details. In the first case theoretical solution is imposed directly (for example as
function of constant analytical factors), but in the other the known character of the solution is approxi-
mated using shape functions of the finite elements. Thus, in the later case it is necessary to use asymptotic
finite elements.

3. Results of computations of stress intensity factors

3.1. Sheet with a central crack subjected to tensile and shear loading

The numerical methods presented in the previous sections have been applied to evaluate the stress in-
tensity factors and the coefficients of leading terms in the asymptotic expansion of the stress field near the
notch tip. A square sheet with dimensions b ¼ h ¼ 10 and with a central crack of length 2l ¼ 2 (Fig. 3) has
been analyzed. The following four loading cases have been considered:

(a) tensile loading in the direction perpendicular to the crack plane r2 ¼ 100;
(b) tensile loading in the direction parallel to the crack plane r1 ¼ 100;
(c) biaxial tensile loading ðr1 ¼ r2 ¼ 100Þ;
(d) shear loading s ¼ 100.

Let us take into consideration the first, the second and the third terms of the asymptotic expansion of the
stress field at the crack tip. The components of the stress tensor and displacement vector are written as

• for mode I loading:
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• for mode II loading:
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where r, # are polar coordinates with an origin at the crack tip.

Fig. 3. Sheet containing a central crack subjected to tensile and shear loading.
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j ¼ ð3� mÞ=ð1þ mÞ for plane stress;
ð3� 4mÞ for plane strain;

�

m is Poisson’s ratio.
It should be pointed out, that the coefficients of the dominant singular terms in expressions (28) and (29)

are just the classic stress intensity factors KI1 ¼ KI and KII1 ¼ KII. The second term of the solution for the
sliding mode describes rotation of the system with respect to the crack tip. The second term for the opening
mode characterizes the normal compression stresses along the crack plane. It should be noted, that for the
case (b) the problem is nonsingular and can be described just by the second term of the asymptotic solution.

Due to the double symmetry (in cases (a), (b) and (c)) and anti-symmetry (in case (d)) only the upper
right quarter of the sheet has been modeled. Two basic finite element discretisations have been used:

(1) mesh containing 112 elements (251 nodes) with node number 251 located at the tip;
(2) mesh containing 160 elements (353 nodes) with node number 353 located at the tip.

Both cases have been illustrated in Fig. 4, the basic difference being the mesh density in the tip region (8
elements surrounding the tip in the first case as shown Fig. 4b have been replaced by 56 elements in the
second case as shown in Fig. 4c).

Two types of finite elements were used:

• special 6-node triangular asymptotic finite elements AST (Seweryn, 1990c; Seweryn et al., 1997) used in
some cases for the first row of elements surrounding the crack tip (8 elements);

• standard 6-node triangular finite elements of the second order used for the whole mesh or for the whole
mesh except the elements surrounding the crack tip.

The analytical constraints were imposed on the displacements of the nodes in the tip vicinity. There are
50 constraints if one assumes the analytic solution in the nodes of the first row of elements (27 nodes give 54
degrees of freedom and there are three boundary conditions and one displacement component of the tip
node remains unknown). Similarly there will be 116 constraints if the analytic solution is assumed in the
nodes of the first two rows of elements etc. The elements of the constraint matrix have been computed
considering from one to three leading terms of the asymptotic solution. According to literature for the
loading cases (a) and (c) the stress intensity factor is KI ¼ 187:8 (Bowie and Neal, 1970) and obviously for
the loading case (b) one has KI1 ¼ 0 and KI2 ¼ �100. The results of calculations are given in Tables 1–3.

Accuracy of the results is quite high. In a number of cases the stress intensity factors KI and KII as well as
coefficient KI2 were computed with an error below 1%.

It should be pointed out that increasing the mesh density had only a limited effect on the accuracy. The
number of terms of asymptotic expansion taken into consideration seems to be a more significant factor. In
order to achieve a reasonable accuracy it is necessary to incorporate two or for some cases even three terms
but further increase of the number of terms does not influence the results of computations of KI and KII. If
standard finite elements are used for the whole mesh (including the crack tip vicinity) the error gets about
5%. The above error can be reduced by increasing the mesh density and by imposing analytical constraints
over a larger region surrounding the crack tip (in comparison to the mesh with special finite elements in the
crack tip vicinity).

3.2. Sheet containing an angled central crack

As another example the problem of a square sheet with an angled central crack under tension was solved
(Fig. 5). The sheet dimensions were assumed to be b ¼ h ¼ 10, the crack length was 2l ¼ 2, the crack
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Table 1

Computed values of the coefficients K for the sheet with a central crack subjected to tensile loading (opening mode: mode I)

Number of

terms in

solution

Number of

analytical

constraints

r1 ¼ 0, r2 ¼ 100 r1 ¼ 100, r2 ¼ 100 r1 ¼ 100, r2 ¼ 0

KI KI2 KI3 KI KI2 KI3 KI KI2 KI3

1 50 169.5 – – 182.3 – – 12.73 – –

2 50 180.8 90.862 – 181.2 )8.6 – 0.455 )99.49 –

3 50 186.7 106.41 21.9 187.2 6.95 21.94 0.46 )99.47 0.035

1 116 157.5 – – 178.1 – – 20.68 – –

2 116 174.4 83.401 – 174.9 )16.17 – 0.443 )99.56 –

3 116 185.8 104.55 21.8 186.2 5.01 21.86 0.470 )99.51 0.055

Total number of elements––112, number of singular elements––8.

Fig. 4. (a) The finite element mesh for a sheet with a central crack; (b, c) crack tip region for the mesh containing respectively 112 and

160 elements.
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Table 2

Computed values of the coefficients K for the sheet with a central crack subjected to tensile loading (opening mode: mode I)

Number of

terms in

solution

Number of

analytical

constraints

r1 ¼ 0, r2 ¼ 100 r1 ¼ 100, r2 ¼ 100 r1 ¼ 100, r2 ¼ 0

KI KI2 KI3 KI KI2 KI3 KI KI2 KI3

2 50 185.09 98.65 – 185.56 )0.85 – 0.47 )99.50 –

3 50 186.78 107.48 24.53 187.25 7.98 24.54 0.47 )99.50 0.012

2 116 183.49 95.61 – 183.46 )3.91 – 0.46 )99.52 –

3 116 186.54 107.21 22.87 187.00 7.72 22.9 0.46 )99.49 0.039

2 182 181.84 92.85 – 182.30 )6.67 – 0.46 )99.52 –

3 182 186.40 106.89 22.68 186.86 7.40 22.70 0.46 )99.49 0.041

2 248 180.14 90.68 – 181.59 )8.85 – 0.45 )99.53 –

3 248 186.19 106.49 22.36 186.65 7.00 22.40 0.46 )99.49 0.023

Total number of elements––160, number of singular elements––8.

Table 3

Computed values of the coefficients K for the sheet with a central crack subjected to shear loading (sliding mode: mode II, s ¼ 100)

Number of terms

in solution

Number of

analytical

constraints

With singular finite elements Without singular finite elements

KII KII2 KII3 KII KII2 KII3

2 50 183.28 32.02 – 166.37 22.36 –

3 50 183.93 35.95 21.82 166.79 25.10 15.39

2 116 182.11 28.50 – 173.09 21.08 –

3 116 183.42 34.11 21.91 174.23 26.14 20.01

2 182 181.33 30.40 – 175.16 25.51 –

3 182 183.25 37.16 21.80 176.34 31.98 20.92

2 248 180.34 26.83 – 176.07 26.38 –

3 248 183.23 34.53 21.86 178.35 33.88 21.38

Total number of elements––160.

Fig. 5. Sheet containing an angled crack subjected to tension.
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inclination to the direction of loading was defined by angle c and the loading was r ¼ 100. The sheet was
divided into 360 finite elements (Fig. 6), the crack tip being surrounded by the singular AST elements. The
stress intensity factors KI and KII computed with the method of analytical constraints were compared to the
values obtained using the J-integral and the H-integral. The analytical constraints were imposed on
the nodes belonging to the elements surrounding the crack tip and the external boundary of that region was
taken as the contour of integration of the J-integral and the H-integral. Three terms of the asymptotic
expansion were taken into account for both tensile and shear loading (Eqs. (28) and (29)).

The results of calculations of the stress intensity factors KI and KII and coefficient: KI2, KII2, KI3 and KII3

are presented in Table 4. There is a good agreement between the values of KI and KII obtained using the
method of analytical constraints and the J-integral calculations both for simple loading (Mode I or Mode
II) and for complex loading (combined Modes I and II). The computations based on the invariant integrals
such as the J-integral and the H-integral can provide just the values of KI and KII. The significance of the
coefficient KI2 (that corresponds to the stress component tangent to the crack axis––see Eq. (28)) has been
demonstrated by Ramulu and Kobayashi (1994) and Seweryn (1998). For cracks inclined at a small angle to

Table 4

Computed values of the analytical parameters for the sheet with an angled crack

Crack an-

gle c (deg)

Method of analytical constrains Contour integral J Contour integral H

KI KII KI2 KII2 KI3 KII3 KI KII KI KII

0 0.53 4e� 4 )99.28 3e� 7 0.048 2e� 4 0.314 5e� 4 0.484 2e� 4

15 12.81 45.55 )85.84 0.0156 1.55 5.42 13.09 44.92 13.23 41.60

30 46.48 79.07 )48.37 0.027 5.73 9.42 46.83 78.01 46.70 72.01

45 92.68 91.65 2.65 0.0315 11.21 10.89 92.99 90.483 92.96 83.70

60 139.25 79.61 54.07 0.027 16.76 9.46 139.66 78.64 140.10 72.47

75 173.45 46.04 92.06 0.016 20.93 5.46 173.85 45.34 174.34 42.03

90 185.95 �6e� 6 105.97 3e� 8 22.46 �3e� 4 186.34 8e� 4 186.56 6e� 4

Fig. 6. The finite element mesh for a sheet with an angled crack.
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Fig. 7. The specimen with V-notches.

Fig. 8. The finite element mesh for a specimen with V-notches (symmetrical problem).
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the direction of tension the value of KI2 is a major factor influencing the critical load as well as the direction
of crack propagation.

3.3. Sheet with V-notches subjected to tensile and shear loading

The method of analytical constraints was used to compute the generalized stress intensity factors in the
case of elements with V-notches made out of polymethyl metacrylate (PMMA) under tensile and shear
loading. The problem geometry, material parameters (the Young modulus E ¼ 3300 MPa, the Poisson ratio
m ¼ 0:35), boundary conditions and loads are the same as in previous experimental investigations (cf.
Seweryn et al., 1997). The specimens dimensions were as follows (Fig. 7): length h ¼ 106 mm, width b ¼ 100
mm, the distance between notch tips a ¼ 50 mm, thickness t ¼ 5 mm and the wedge notch angle was varied
from 2b ¼ 20� to 2b ¼ 80�. The enforced displacements were prescribed along the upper specimen edge
in the direction of y axis for tension and x axis for shear. A typical mesh of finite elements is presented
in Fig. 8.

In calculations by the method of analytical constraints 2 or 3 terms of asymptotic expansions were used.
The exponents of the displacement field corresponding to the terms of analytic solution are given in Table 5.
Two series of computations were conducted. In the first one the analytical constraints were imposed within
the finite elements directly surrounding the crack tip (region XA1). In the second series of computations the
analytical constraints were additionally imposed over the second row of elements in the crack tip vicinity
(region XA2).

The calculation results of the generalized stress intensity factors Kk
I and Kk

II referred to the values of
normal and shear load components for wedge-notched specimens of the notch opening angle 2b are pre-
sented in Table 6. The tensile and shearing load components P and T have been calculated by integrating
the resulting stresses across the specimen width. The results of calculations by using analytical constraint
method (FEM) and H-integral method (BEM) (presented in the paper by Seweryn and Łukaszewicz (2002))
are compared.

Table 5

Value of the exponents of the displacement fields kIk and kIIk (for mode I and II)

Notch angle

2b (deg)

Exponents kIk (for opening) Exponents kIIk (for sliding)

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 1 k ¼ 2 k ¼ 3

20 0.5004 1.1254 1.4976 0.5620 1.0 1.6752

40 0.5035 1.3027 1.4670 0.6382 1.0 1:9497þ 0:1265i

60 0.5122 1:4710þ 0:1418i 2:6776þ 0:2849i 0.7309 1.0 2:0749þ 0:2294i

80 0.5304 1:5724þ 0:2095i 2:8664þ 0:3493i 0.8434 1.0 2:2200þ 0:2927i

Table 6

Value of the generalized stress intensity factors for the specimens with V-notches

Notch angle 2b
(deg)

Method of analytical constrains (FEM) H-integral method (BEM)

(Seweryn and Łukaszewicz, 2002)Region XA1 Region XA2

Kk
I =P Kk

II=T Kk
I =P Kk

II=T Kk
I =P Kk

II=T

20 0.6319 0.6875 0.6304 0.6867 0.6166 0.6737

40 0.6475 0.9811 0.6460 0.9854 0.6323 0.9981

60 0.6876 1.4764 0.6854 1.4930 0.6676 1.4772

80 0.7588 2.2331 0.7561 2.2869 0.7350 2.3112
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4. Conclusions

The method of analytical constraints integrates the ideas of the method of the reduced basis and the
method of hybrid elements. In order to conform to some analytic relations constraining the displacements
the problem is formulated in terms of certain theoretical parameters (such as the stress intensity factors)
instead of the displacement components. The number of the nodes where the displacements are constrained
by analytic relations depends on the assumption concerning the size of the region with the theoretical
solution.

Applying the method of analytical constraints reduces the number of degrees of freedom and thus re-
duces the time of computations (in comparison to the initial finite element mesh). The values of the ana-
lytical parameters are evaluated in a direct way from the set of equations following from minimization of
the total strain energy of the system under consideration. The method can be used for the problems in-
volving cracks and V-notches as well as any other problems where the character of the displacement field is
known from theory (as for example in problems with sharp inclusions, problems with hyperbolic notches
and contact problems). The accuracy of solution increases with increasing number of terms of asymptotic
expansion taken into consideration. It should be emphasized that an increased accuracy of computing of
field quantities by increasing the number of terms in asymptotic expansion will imply an increase of ac-
curacy of fracture predictions provided the above terms are also incorporated into the formulation of the
fracture criterion.

The method of analytical constraints enables accurate evaluation of the values of the generalized stress
intensity factors and other analytical parameters even for coarse finite element meshes and does not nec-
essarily require using special asymptotic finite elements. If standard finite elements are to be used for the
whole model one should assure adequately finer mesh in the region where singularity dominates. The
number of terms of the analytic solution taken into consideration should be related to the extend of the area
with nodes where the analytical constraints are applied, that is for larger area more terms should be
considered.

The size of the region with analytic solution can be related to the size of the damage region occurring in
nonlocal fracture criteria (cf. Seweryn and Mr�ooz, 1995, 1998).

A serious deficiency of the method of analytical constraints, similarly to the method of hybrid elements,
is the need to use specialized finite element software. However, it is quite straightforward to incorporate the
method of analytical constraints into the standard finite element code.
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